An Incomplete Medical Physics Review

Equation roundup

Useful Medical Physics equations

Particle interactions and basic physics

  • Wave-particle
    $c = \lambda \nu$
    $E = h \nu = hc / \lambda$
    $E(keV) = 1.24 / \lambda(nm)$
  • Photoelectric effect
    $E_{pc} = E_{o} + E_{b}$
  • Compton Scattering
    $E_o = E_{sc} + E_{e-}$
    $\lambda' - \lambda = \frac{h}{m_e c}(1-\cos{\theta})$
    $E_{sc} = \frac{E_o}{1+(E_o/m_e c^2)(1-\cos{\theta})}$
  • $E_{CE} = \frac{2E^2_\gamma}{2E_\gamma+m_ec^2}$ (compton edge)
  • Klein-Nishina formula
    $ {\frac {d\sigma }{d\Omega }}={\frac {1}{2}}\alpha ^{2}r_{c}^{2}P(E_{\gamma },\theta )^{2}[P(E_{\gamma },\theta )+P(E_{\gamma },\theta )^{-1}-\sin ^{2}(\theta )]$ where $P(E_{\gamma },\theta ) = E_{sc}/E_{o}$,
  • Magnetic force
    F = $q v\times B$

Radioactivity

  • Attenuation
    $dN/N = \mu \, dx$ → $ N = N_0 e^{-\mu x}$
  • Half-value layer and mean free path
    $HVL = \ln(2)/\mu$
    $MFP = 1/\mu = 1/(ln(2)/HVL) = 1.44 HVL$
  • Change in exposure from shielding
    $I = I_0 e^{(-\ln(2) \, x / HVL)}$ where $x$ is thickness of shielding
  • Radioactivity: $A = -dN/dt = \lambda N$, integrate: $N(t) = N_0 e^{-\lambda t}$ or $A(t) = A_0e^{-\lambda t}$
    $\lambda = \ln(2)/T_{1/2}$
  • Effective half-life (physical + biological): $T_e = \frac{T_p \cdot T_b}{T_p + T_b} = 1 / (1/T_p + 1/T_b)$
  • Effective decay constant: $\lambda_e = \lambda_p + \lambda_b$
  • Cumulated activity from initial activity: $\tilde{A} = A \times T_{mean} = A \times T_{1/2} \,/\, \text{ln}(2)$
  • To find the daughter activity, one can use the Bateman equation:
    ${\displaystyle A_{d}=A_{P}(0){\frac {\lambda _{d}}{\lambda _{d}-\lambda _{P}}}\times (e^{-\lambda _{P}t}-e^{-\lambda _{d}t})\times BR+A_{d}(0)e^{-\lambda _{d}t},}$
    where $A_P$ and $A_d$ are the parents and daughter activities, $T_P$ and $T_d$ are the corresponding half-lives, and $\lambda_P$ and $\lambda_d$ are the corresponding decay constants. BR is the branching ratio.
  • Transient equilibrium: Production rate and decay rate of daughter are equal.
    ${\displaystyle {\frac {A_{d}}{A_{P}}}={\frac {T_{P}}{T_{P}-T_{d}}}\times BR.}$
  • Activity per unit mass (Bq/g)
    $a = \frac{\lambda N_A}{m} = \frac{ln(2) N_A}{T_{1/2} \times m}$ where NA is the Avogadro constant.
  • Saturation activity from production cross section and flux
    $A(t) = \Sigma \cdot \Phi \cdot (1-e^{-\lambda\,t})$
  • Fraction of saturation from number of half-lives
    $f = 1 - (1/2)^n$ 
  • Exposure rate = $\frac{\Gamma\, A}{d^2}$ where $A$ is the activity, $d$ is distance from source, and $\Gamma$ is the gamma constant, specific to each radionuclide.

Exposure and Kerma

  • Exposure (R or C/kg)
    $X = dQ/dm$
  • Kerma (Gy)
    $K = \frac{dE_{tr}}{dm} = \Psi(\frac{\mu_{tr}}{\rho}) =\Psi(\frac{\mu_{en}}{\rho}) / (1-g)$
  • Exposure from Kerma
    $X = (K^{col})_{air} \cdot (\frac{e}{\bar{W}})$
  • Dose from Kerma
    $D_{air} = (K^{col})_{air}  = X \cdot \frac{\bar{W}}{e}$ (conversion of R to cGy in air is 0.876)
  • Bragg-Gray cavity theory
    $D_m = D_g \cdot (\frac{S}{\rho})^m_g = \frac{Q}{m_g} \cdot \frac{W_{air}}{e} \cdot(\frac{S}{\rho})^m_g$

Film/Optics

  • Optical density of film
    $OD = \text{log}\frac{I_0}{I_t}$

Dose calculations (therapy)

  • Correction for temperature and pressure (ion chamber)
    $P_{T,P} = 101.33 / P * (273.2 + T) / (273.2 + 22)$
  • TG-51 absorbed dose to water
    $D^Q_w = M k_Q N^{^{60}Co}_{D,w}$
  • Percentage depth dose (PDD)
    $\text{PDD}(d,r,SSD) = D_d / D_0 × 100%$
  • Equivalent square
    $c = 4 \cdot A/P = \frac{2\,a\,\times\,b}{(a\,+\,b)}$
  • Equivalent circle
    $r = 4/\sqrt{\pi} \cdot A/P$
  • Mayneord F factor
    $F = \left(\frac{f_2+d_m}{f_1+d_m}\right)^2\left(\frac{f_1+d}{f_2+d}\right)^2$
  • Tissue-air-ratio (TAR)
    $\text{TAR}(d,r_d) = D_d / D_{fs}$
  • Scatter-air-ratio (SAR)
    $\text{SAR}(d,r_d) = TAR(r,d_r) - TAR(d,0)$ 
  • Tissue maximum ratio
    $\text{TMR}(d,r_d) = (\frac{P(d,r,f)}{100}) (\frac{f+d}{f+d_{m0}})^2 (\frac{S_p(r_{m0})}{S_p(r_d)})$
  • Monitory unit calculation
    $MU = \frac{D}{ D_{cal} \cdot S_c(r_c) \cdot S_p(r_d)  \cdot TPR(d,r_d) \cdot WF(d,r_d,x) \cdot  TF \cdot OAR(d,x) \cdot (SCD/SPD)^2 }$
  • Adjacent fields separation
    $S = \frac{1}{2} \cdot L_1 \cdot\frac{d}{SSD_1} + \frac{1}{2} \cdot L_2 \cdot \frac{d}{SSD_2}$
  • Electron field most probably energy at depth
  • $(E_p)_z = (E_p)_0(1-\frac{z}{R_p})$
  • Electron field most probably energy at depth
    $\bar{E_z} = \bar{E_0} (1-\frac{z}{R_p})$
  • Range of heavier ions relative to proton range
    $R_{ion} = R_p \cdot M_{ion} / M_p \cdot z^2$
  • Air kerma rate constant
    $\Gamma_\delta = \frac{l^2}{A}\left(dk_{air}/dt\right)$
  • Air Kerma Strength
    $S_k = \dot{K_l}\cdot l^2 = \dot{X}\cdot (\bar{W}/e) \cdot l^2$

Internal dose

  • Medical Internal Radiation Dose (MIRD)
    $D(r_T) = \sum_s{\tilde{A}_s(r_s) S(r_T ← r_s)} = \sum_s{\tilde{A}_s(r_s) \sum_i{\Delta_i \phi_i / m_T}}$

Shielding

  • Transmission factor - primary
    $B = \frac{P \cdot d^2}{WUT}$
  • Transmission factor - scatter
    $B_s = \frac{P}{\alpha W T} \cdot \frac{400}{F} \cdot d^2 \cdot d'^2$
  • Transmission factor - leakage
    $B_l = \frac{P \cdot d^2}{0.001 WT}$

Counting

  • Non-paralyzable count rate
    $T = M / (1 - M \, d)$
  • Paralyzable count rate
    $M = T\,e^{-T d}$
  • T = true, M = measured, d = dead time
  • Chi-squared value:
    • $\chi^2 = \frac{\sum(n-\bar{n})^2}{\bar{n}}$ where $\bar{n}$ is the mean value and $n$ are the individual values

CT

  • HU (CT number)
    $\text{HU} = 1000 \cdot \frac{\mu - \mu_w}{\mu_w - \mu_{air}}$

Ultrasound

  • Speed of sound based on density bulk elastic modulus
    $C = (K/\rho)^{1/2}$
  • Acoustic impedance
    $Z = \rho C = (K\rho)^{1/2}$ (kg/m2s = rayl)
  • Relative intensity
    $\text{RI} = 10 \log(I_2/I_1) = 20 \log(A_2/A_1)$ (dB)
  • Half value layer acoustics
    $I_2/I_1 = 0.5 \rightarrow 10 \log(0.5) = -3$ dB
  • Reflection fraction from relative impedances
    $(Z_1 - Z_2)^2/(Z_1 + Z_2)^2$
  • Snell's law
    $\sin(\theta_1)/\sin(\theta_2) = v_1/v_2 = n_2/n_1$
  • Acoustic attenuation:
    $I = I_0 \exp(-\mu x)$ where $\mu = \alpha f$ in dB
    • $\alpha \approx 1$ db/cm/MHz for soft tissue.
  • Spatial pulse length (SPL)
    $n\lambda$, cycles * wavelength
  • Axial resolution
    $n \lambda/2 = SPL/2$  ($n$ is typically 3.)
  • Doppler effect based on speed, speed of sound in medium, transducer frequency and angle of velocity wrt wave
    $f_{shift} = 2 \cdot (v/c) \cdot f_0 \cdot \cos(\theta)$
  • Length of near field (Fresnel zone) relative to transducer diameter and wavelength
    $\text{L} = \frac{D^2}{4λ} = \frac{r^2}{\lambda}$
  • Far field (Fraunhofer zone) divergence
    $\theta = 70 λ / D \text{(deg)} = 1.22 λ / D \text{(rad)}$

MRI

  • Magnetic moment
    $\mu_z = \pm \frac{\gamma h}{4 \pi} $
  • Excess spins based on Boltzman statistics
    $N_{anti}/N_{parallel} = \text{exp}(\frac{\Delta E}{kT}) = \text{exp}(\frac{\gamma h B_0}{2 \pi k T}) \approx 1 + \frac{\gamma h B_0}{2 \pi k T}$
  • Larmor frequency
    $f_0 = \gamma B_0$
    hydrogen 1H, $\gamma$ = 42.57 MHz/Tesla)
  • Bloch equation
    $\frac{dM}{dt} = \gamma M x B$
  • Flip angle
    $\theta = \gamma B_1 t$
  • Longitudinal magnetization
    $M_z = M_0 (1-\text{exp}(-t/T1))$
  • Transverse magnetization
    $M_{xy} = M_0 \text{exp}(-t/T2)$
  • Spin-echo signal
    $S = M_0(1-e^{-TR/T1})e^{-TE/T2}$
  • Ernst angle (flip angle that maximizes signal for a given TR)
    $\theta_E = arccos(e^{-TR/T1})$
  • Magnetic susceptibility
    $B_0 \propto (1+\chi) H_0$

Imaging

  • Detective Quantum Efficiency (DQE)
    $\text{DQE} = (\text{SNR}_{out}/\text{SNR}_{in})^2$
  • Signal-to-Noise Ratio (SNR)
    $\text{SNR} = \mu_{sig} / \sigma_{bkgd}$
    $\text{SNR} = \mu_{sig} / \sqrt{\sigma_{bkgd}^2 + \sigma_{sig}^2}$
    $\text{SNR} = \sum_i{(x_i - \bar{x}_{bg})} / \sigma_{bkgd}$
  • Contrast-to-Noise Ratio (CNR)
    $\text{CNR} = (\mu_{sig} - \mu_{bkgd}) / \sigma_{bkgd}$
    $\text{CNR} = (\mu_{sig} - \mu_{bkgd}) \,/ \sqrt{\sigma_{bkgd}^2 + \sigma_{sig}^2}$ 

Radiation biology

  • Multitarget model
    $ln(n) = D_q / D_0$ 
  • Linear-quadratic model surviving fraction
    $S = e^{-\alpha D - \beta D^2}$
  • Dose to kill 90%
    $D_{10} = 2.3 \times D_0$
  • Tumor control probability
    $\text{TCP} = e^{-(SF \times M)} = e^{-N} $ (SF is surviving fraction and M is number of clonogens, N is average # of surviving cells)
  • Biologically equivalent dose
    $\text{BED} = nd(1+\frac{d}{\alpha/\beta})$
  • Equivalent dose to 2 Gy/fraction
    $\text{EQD2} = D\frac{d+\alpha/\beta}{2+\alpha/\beta}$
  • Adjacent field surface separation
    $S = \frac{1}{2} \cdot L_1 \cdot\frac{d}{SSD_1} + \frac{1}{2} \cdot L_2 \cdot \frac{d}{SSD_2}$
  • Equivalent uniform dose for tissue with property $a$
    $\text{EUD} = \left(\sum_i v_i D_i^a\right)^{1/a}$

Constants and values to know

  • h = planck's constant = 6.626e-34 J s = 4.136e-18 keV s
  • 1 amu = 931.5 MeV = 1/12 mass of 12C
  • Energy to create ion pair: $\bar{W}/e = 33.97$ J/C
  • Avogadro's constant: $N_A ≡ 6.02214076×10^{23} mol^{-1}$
  • barn (area/cross-section): 10−28 m2 

Dose

  • 10 mSv = 1 rem
  • Absorbed Dose: 1 Gy = 1J/kg = 100 rads
  • Equivalent Dose: 1 Sv = 100 rem

Tags: , -, Equations


Previous subject